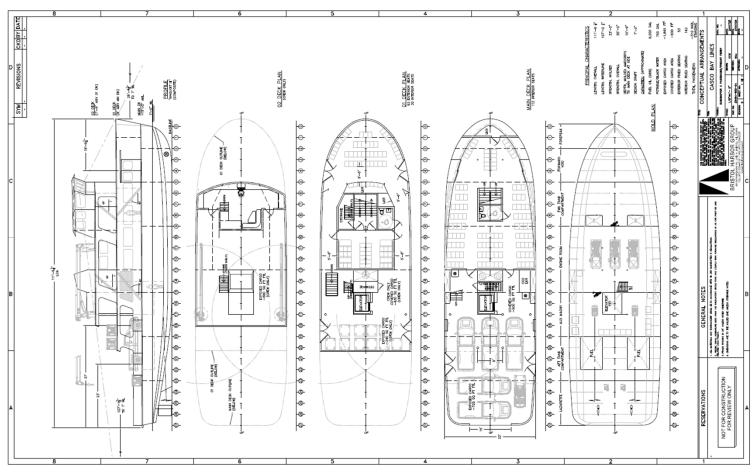


Bristol Harbor Group, Inc.

Casco Bay Island Transit District- Down Bay Ferry Design

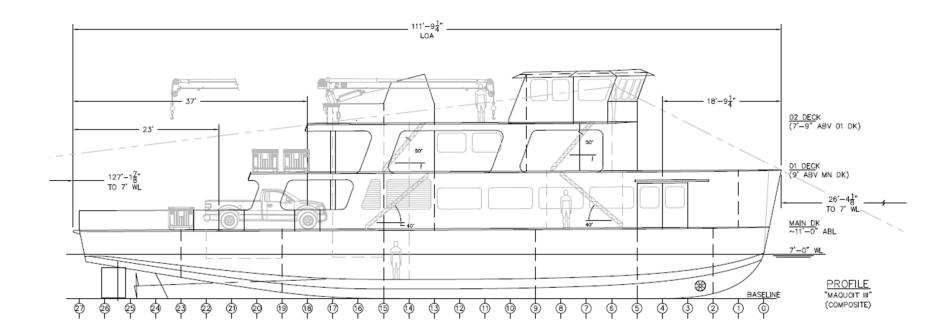
Cory Wood, Vice President 04NOV25



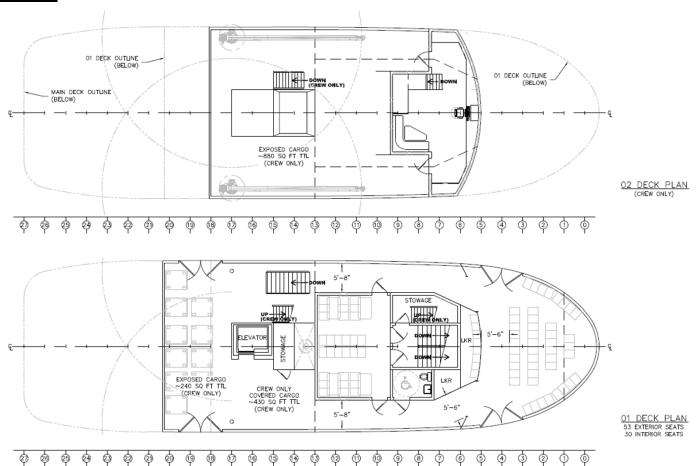
Project Update

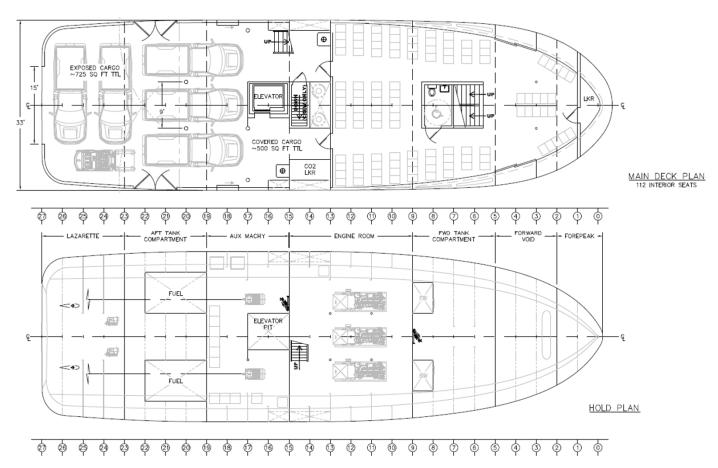
- Propulsion System Options
 & Evaluation COMPLETE
- Preliminary Design Report DRAFT COMPLETE
 - BHGI is recommending proceeding to contract design with a diesel electric propulsion system utilizing (3) Cat C18 main generators

Conceptual Arrangement


Principal Characteristics

PRINCIPAL CHARACTERISTICS

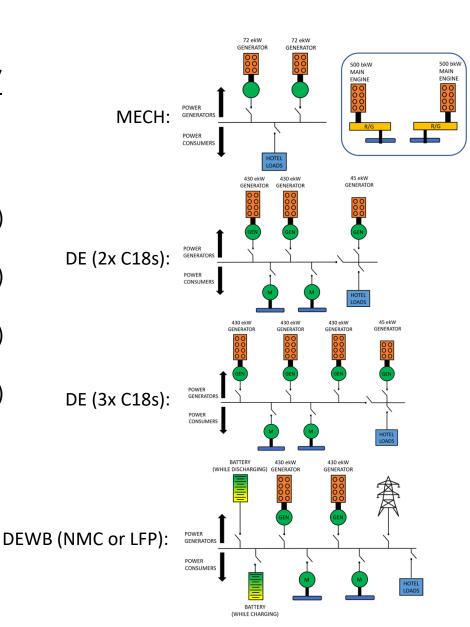

LENGTH, OVERALL	111'-9 1/4"
LENGTH, WATERLINE	107'-2 ½"
BREADTH, MOLDED	33'-0"
BREADTH, OVERALL	35'-0"
DEPTH, MOLDED AMIDSHIPS TO MAIN DECK AT SIDE	10'-9"
DESIGN DRAFT	7'-0"
CAPACITIES: (APPROXIMATE)	
FUEL OIL (98%)	6,000 GAL
POTABLE/BLACK WATER	750 GAL
EXPOSED CARGO AREA	~1,845 FT²
COVERED CARGO AREA	\sim 930 FT^2
EXTERIOR FIXED SEATING	53
INTERIOR FIXED SEATING	142
TOTAL PASSENGERS	~310 INCL STANDING


Outboard Profile

Upper Decks

Lower Decks

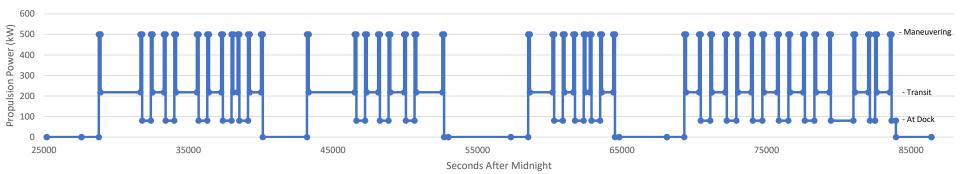
Concept Level Cost Estimate

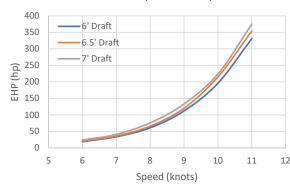

- Baseline estimate assumes
 MAQUOIT III concept with
 conventional propulsion system
 w/(2) C18's
- Total estimated cost includes adjustment for recommended DE propulsion system
- Estimated costs are in 2025 USD

	HULL ONE - 2025										
	VESSEL CONSTRUCTION ESTIMATE										
		LABOR MATERIALS SUBTOTAL MATERIAL TOTAL						TOTAL	PERCENT		
GROUP	DESCRIPTION	(HOURS)		(\$)		(\$)	MA	ARKUP (\$)		ITEM (\$)	
0	ENGINEERING & YARD SERVICES	0	\$	-	\$	-	\$,	\$	-	0.0%
1	HULL STRUCTURE	18,760	\$	432,287	\$	2,046,000	\$	65,000	\$	2,111,000	13.9%
2	PROPULSION	4,184	\$	1,224,232	\$	1,584,000	\$	184,000	\$	1,768,000	11.6%
3	ELECTRIC PLANT	5,698	\$	733,395	\$	1,223,000	\$	110,000	\$	1,333,000	8.8%
4	COMMAND AND SURVEILLANCE	513	\$	523,118	\$	567,000	\$	78,000	\$	645,000	4.2%
5	MACHINERY, GENERAL	9,443	\$	2,028,690	\$	2,841,000	\$	304,000	\$	3,145,000	20.6%
6	OUTFIT & FURNISHINGS	9,042	\$	1,470,059	\$	2,248,000	\$	221,000	\$	2,469,000	16.2%
8	INTEGRATION	16,504	\$	832,500	\$	2,252,000	\$	125,000	\$	2,377,000	15.6%
9	POST CONSTRUCTION SUPPORT	5,140	\$	820,181	\$	1,262,000	\$	123,000	\$	1,385,000	9.1%
	SUBTOTAL	69,285	\$	8,064,461	14,023,000		\$1,210,000		\$15,233,000		
	LABOR RATE - 2025	\$86.00	F	PER HOUR							
	MATERIAL MARKUP	15%				1,210,000					
	PRICE - 2025 DOLLARS					15,233,000					
	CONTINGENCY - CONCEPT DESIGN	15%				2,284,950					
	PRICE WITH CONTINGENCY					17,517,950		, and the second			

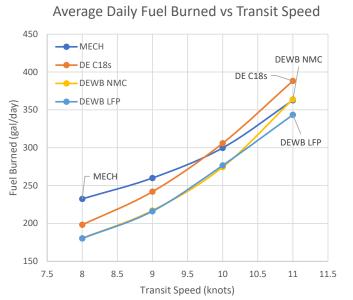
MAQUOIT III Conceptual Cost Estimate							
(2025 USD)							
Baseline Cost Estimate (Ref 1)	\$	17,517,950					
Adjustment for Propulsion							
Option 3	\$	1,596,000					
Total Estimated Cost	\$	19,113,950					

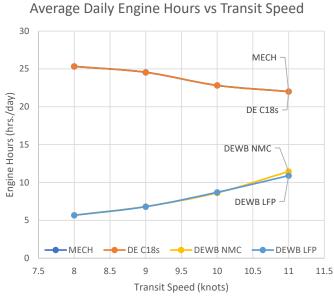
Propulsion Systems Studied:

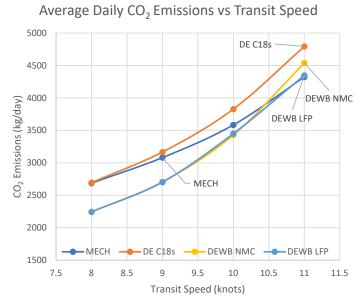

- Diesel mechanical system with 2 C18 (500 bkW) engines and 2 house generators (72 ekW)
- 2. Diesel electric system with 2 C18 generators (430 ekW) and 1 house generator (45 ekW)
- 3. Diesel electric system with 3 C18 generators (430 ekW) and 1 house generator (45 ekW)
- 4. Diesel electric system with 2 C18 generators (430 ekW) and 1,000 kWh of NMC batteries
- 5. Diesel electric system with 2 C18 generators (430 ekW) and 1,000 kWh of LFP batteries


Operational Profile:

- Used existing vessel schedule and computational fluid dynamics (CFD) analysis used to get power demand
- 8, 9, 10 & 11 knot transit speeds studied at 6', 6.5' and 7' drafts
 - 8 knots was minimum speed to enforce 30-minute load and unload time in Portland
- A 9 knot transit speed and 50% of time at a 6.5' draft & 50% of time at a 7' draft was used in all feasibility study calculations
- Departure time from Portland fixed. Other departure times dependent on transit speed
- 10-minute load/unload time at each location
- 2-minute maneuvering/acceleration/deceleration





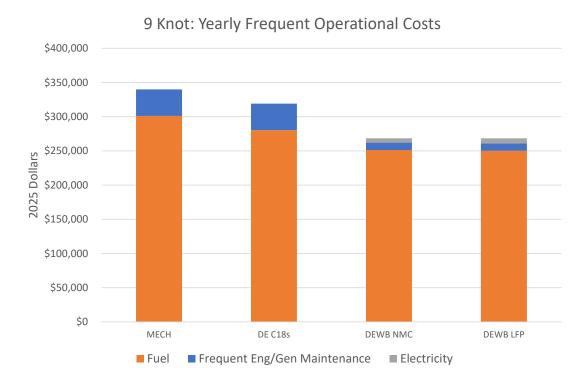


Propulsion System Simulations:

- Models and control logic were set up in MATLAB and Simulink
- Transit speeds from 8-11 knots were simulated
- Engine/generator hours, fuel usage, and CO₂ emissions were tracked
- 50% of time at a 6.5' draft and 50% of time at a 7' draft was assumed

Feasibility Study Criteria:

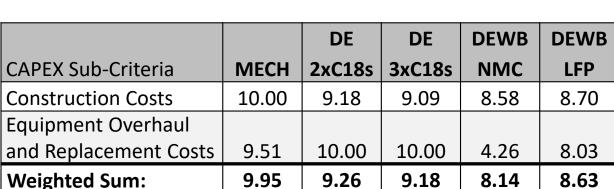
- Operational Expenses (OPEX)
- Capital Expenses (CAPEX)
- Sustainability
- Serviceability
- Reliability


Evaluation Criteria	Weighting of Overall Score
OPEX	39%
CAPEX	19%
Sustainability	12%
Serviceability	10%
Reliability	20%

Evaluation Criteria	MECH	DE 2xC18s	DE 3xC18s	DEWB NMC	DEWB LFP
OPEX	7.90	8.41	8.41	10.00	10.00
CAPEX	9.95	9.26	9.18	8.14	8.63
Sustainability	8.77	8.54	8.54	9.98	10.00
Serviceability	7.00	5.80	5.80	4.60	4.60
Reliability	7.18	4.40	8.43	10.00	10.00
Weighted Sum:	8.47	7.78	8.57	9.31	9.40

Operational Expenses:

- Fuel Costs
- Electricity Costs
- Frequent Main Engine Maintenance
 - Events occurring at less than 1,000-hour intervals


Evaluated at 9 knots for the Feasibility Study

OPEX Sub-Criteria:	MECH	DE 2xC18s	DE 3xC18s	DEWB NMC	DEWB LFP
OPEX	7.90	8.41	8.41	10.00	10.00

Capital Expenses (CAPEX):

- Construction Cost Estimates
 - Estimates reflect different engines, generators, switchboards, VFD drives, propulsion motors, batteries, battery room equipment, and extra fire protection if applicable
 - 90% Weighting
- Equipment Overhaul and Replacement Costs
 - Infrequent Main Engine Maintenance
 - Events occurring at greater than 1,000-hour intervals.
 - House Generator Maintenance
 - Battery Replacement
 - Motor Replacement
 - 10% Weighting

DE 2xC18s

\$100,000

\$60,000

\$40,000

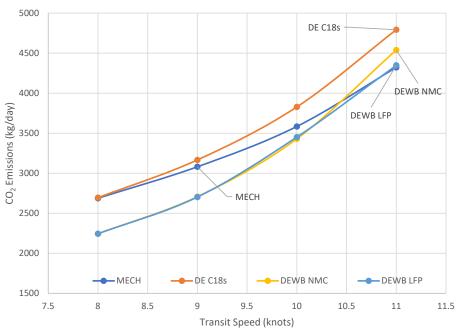
\$0

MECH

Our Core Purpose is to... Create.

9 Knot: Yearly Overhaul and Replacement Cost

DE 3xC18s


DEWB NMC

DEWB LFP

Sustainability:

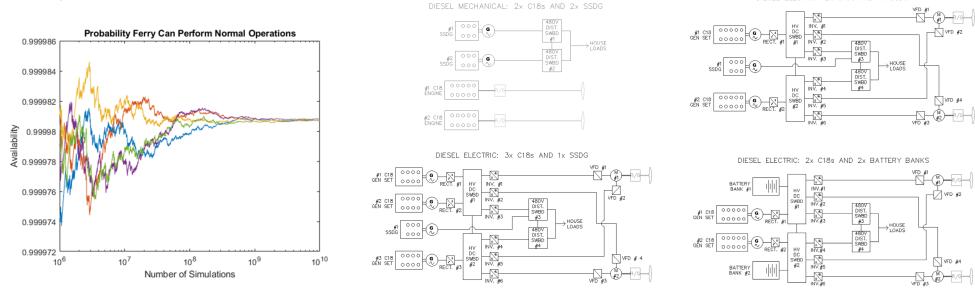
- CO₂ emissions were evaluated for a 9-knot transit speed.
 - Total Well-to-Wake emissions calculated:
 - Well-to-Tank Emissions
 - Engine Emissions
 - Electrical Grid Emissions
- These were directly compared to calculate scores for each propulsion system

Sustainability Sub-Criteria:	MECH	DE 2xC18s	DE 3xC18s	DEWB NMC	DEWB LFP
Carbon Dioxide (CO ₂) Emissions	8.77	8.54	8.54	9.98	10.00

Serviceability:

- Evaluated for five criteria
 - Scored subjectively with a possible ranking from 1-10.
 - TSGI did not evaluate any sub-criteria as extremely low or high as the technology being proposed has been industry proven and Casco Bay Lines has an existing ferry or a new build ferry that utilizes the technologies being proposed

	Sub-Criteria
Serviceability Sub-Criteria	Weighting
Spare Parts Requirements	20%
Replacement Part Availability	20%
Service Technician Availability	20%
Downtime for Repairs	20%
Fleet Similarity	20%


Serviceability Sub-Criteria	MECH	DE 2xC18s	DE 3xC18s	DEWB NMC	DEWB LFP
Spare Parts Requirements	7.00	5.00	5.00	4.00	4.00
Replacement Part Availability	7.00	5.00	5.00	4.00	4.00
Service Technician Availability	7.00	6.00	6.00	4.00	4.00
Downtime for Repairs	7.00	7.00	7.00	5.00	5.00
Fleet Similarity	7.00	6.00	6.00	6.00	6.00
Weighted Sum:	7.00	5.80	5.80	4.60	4.60

Reliability:

• Monte Carlo simulations were run to evaluate availability of the propulsion systems to perform normal

DIESEL ELECTRIC: 2x C18s AND 1x SSDG

operations

Reliability Sub-Criteria:	MECH	DE 2xC18s	DE 3xC18s	DEWB NMC	DEWB LFP
Availability	7.18	4.40	8.43	10.00	10.00